The Reversing Number of a Digraph; A Disjoint Union of Directed Stars

نویسنده

  • Darren A. Narayan
چکیده

A minimum feedback arc set of a digraph is a smallest sized set of arcs that when reversed makes the resulting digraph acyclic. Given an acyclic digraph D, we seek a smallest sized tournament T that has D as a minimum feedback arc set. The reversing number of a digraph was defined by Barthélemy et. al. to be r(D) = |V (T )| − |V (D)|. We will completely determine the reversing number for a disjoint union of directed stars and begin to investigate the problem for the general class of arborescences. AMS Classification: Primary: 05C20, Secondary: 90C47

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spanning Galaxy Problem

In a directed graph, a star is an arborescence with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy Problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynom...

متن کامل

The acircuitic directed star arboricity of subcubic graphs is at most four

A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic directed star arboricity of an oriented graph G (that is a digraph with no opposite arcs) is the minimum number of edge-disjoint directed star forests whose union covers all edges of G and such that the union of any two such forests is acircuitic. We show that e...

متن کامل

On spanning galaxies in digraphs

In a directed graph, a star is an arborescence with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynom...

متن کامل

Complete classification of tournaments having a disjoint union of directed paths as a minimum feedback arc set

A feedback arc set of a digraph is a set of arcs whose reversal makes the resulting digraph acyclic. Given a tournament with a disjoint union of directed paths as a feedback arc set, we present necessary and sufficient conditions for this feedback arc set to have minimum size. We will present a construction for tournaments where the difference between the size of a minimum feedback arc set and ...

متن کامل

The Reversing Number of a Digraph

A minimum reversing set of a digraph is a smallest sized set of arcs which when reversed makes the digraph acyclic. We investigate a related issue: Given an acyclic digraph D, what is the size of a smallest tournataent T which has the arc set of D as a minimum reversing set? We show that such a T always exists and define the reversing number ofan acyclic digraph to be the number of vertices in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000